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Climatemodel projections suggest widespread drying in theMediterranean Basin andwetting in Fennoscandia in
the coming decades largely as a consequence of greenhouse gas forcing of climate. To place these and other “Old
World” climate projections into historical perspective based onmore complete estimates of natural hydroclimatic
variability, we have developed the “Old World Drought Atlas” (OWDA), a set of year-to-year maps of tree-ring
reconstructed summer wetness and dryness over Europe and the Mediterranean Basin during the Common Era.
TheOWDAmatches historical accounts of severe drought andwetnesswith a spatial completeness not previously
available. In addition, megadroughts reconstructed over north-central Europe in the 11th andmid-15th centuries
reinforce other evidence fromNorth America and Asia that droughts weremore severe, extensive, and prolonged
over Northern Hemisphere land areas before the 20th century, with an inadequate understanding of their causes.
The OWDA provides new data to determine the causes of Old World drought and wetness and attribute past
climate variability to forced and/or internal variability.
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INTRODUCTION

Instrumental observations show that the Mediterranean region has been
drying since the 1970s (1). Coupled climate model simulations from
Phase 5 of the Coupled Model Intercomparison Project archive, per-
formed as part of the Intergovernmental Panel on Climate Change
Working Group 1 Fifth Assessment Report (2), further suggest that the
Mediterranean will undergo severe and widespread drying in the coming
decades as a consequence of rising greenhouse gases (GHGs) (3). How-
ever, the recent drying trend has been variably attributed to amixture of
natural climate variability and anthropogenically forced change (4, 5),
with similar challenges in understanding both wetting and drying
trends in other parts of Europe and farther afield (6, 7). This uncer-
tainty arises because the instrumental climate records used in attribution
studies are relatively short, are likely to be confounded by unspecified
levels of GHG forcing, and are unlikely to include the full range of
natural variability. In addition, determining the complete range of pos-
sible future climate states from climate models requires knowing both
the response to changes in anthropogenic forcing and the potential
range of natural variability that will underlie it. Climate models are es-
sential tools for diagnosing ongoing and future climate change, making
it necessary to determine how well they represent each of these drivers
of climate variability.

An extended record of natural hydroclimatic variability from tree-
ring reconstructed drought and wetness before the instrumental era is
a crucial estimate of past climate variability caused by both forced var-
iability and internal variability, which is ideal for assessing the true
range of hydroclimate variability in the preindustrial past and the de-
gree to which climate models properly represent it. The North American
DroughtAtlas (NADA), released in 2004 (8), made clear that droughts of
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a severity and a longevity not seen in the 19th and 20th centuries oc-
curredmore frequently in earlier centuries, and this has sparked a range
of efforts to determinewhether climatemodels can simulate such events
(9, 10). Here, we present theOldWorldDrought Atlas (OWDA), a new
tree ring–based field reconstruction of past droughts and pluvials over
Europe, North Africa, and the Middle East spanning the Common Era
(CE), which will facilitate similar advances in understanding and
modeling hydroclimate variability in the Old World.
RESULTS

The OWDA is a set of year-by-year maps of reconstructed summer
season [June-July-August (JJA)] self-calibrating Palmer Drought Se-
verity Index (scPDSI) (11) on a 5414-point half-degree longitude-
by-latitude grid (Fig. 1). The JJA scPDSI reflects spring-summer soil
moisture conditions and is the same season reconstructed in theNADA
(8) and Monsoon Asia Drought Atlas (MADA) (12). The OWDA is
based on the same regression-based climate field reconstruction
method used to produce the NADA and the MADA. These common
properties allow for direct comparisons of the drought atlases. The
OWDA also provides a longer andmore spatially complete reconstruc-
tion of hydroclimatic variability over the Old World compared to pre-
vious estimates based on instrumental, historical, and natural records
(SupplementaryMaterials). In addition to the tree-ring data from living
trees, we assembled an exceptional amount of historical, archaeological,
and subfossil tree-ring data to extendmany chronologies back amillen-
Cook et al. Sci. Adv. 2015;1:e1500561 6 November 2015
nium or more in time (Supplementary Materials). This allows us to
make informed statements about the properties of hydroclimatic vari-
ability during medieval times in the Old World.

Dendroclimatic reconstructions are traditionally validated through
comparisons of tree ring–based climate estimates with 20th-century
instrumental data that have not been used for calibration (8, 12). This
was performed as well for the OWDA by withholding 1901–1928 in-
strumental scPDSI data from the 1928–1978 calibration period for val-
idation testing (SupplementaryMaterials). However, the vast amount of
historical climate information from Europe extending back many cen-
turies (13) allows for far more extensive comparisons of OWDA recon-
structions with recorded droughts and pluvials.We compare theOWDA
to several historically documented extreme hydroclimatic events (with
additional comparisons shown in Supplementary Materials), with em-
phasis on those events that reflect the spring-summer moisture condi-
tions most relevant to the OWDA.

The great drought of 1921: On the basis of an evaluation of instru-
mental climate data not used to calibrate the OWDA, this drought
was described as “a year of unprecedentedly small rainfall” over large
parts of the British Isles, with the worst deficit occurring in south-
eastern England where London may have experienced its driest year
since 1774 (14). The OWDAmap for 1921 (Fig. 2A) shows the most
extreme drought occurring in southern England, in accordancewith the
report. It also shows serious drought extending over most of central
Europe but less dry conditions in peninsular Italy, a result consistent
with other reports from Europe (15).

The great droughtof 1893: Evaluated againusing instrumental climate
data, “… the absence of rain was phenomenal” during the periodMarch
to June, with a rainfall deficit gradient from 30 to 50% of normal over
southern England to 50 to 90% of normal over Scotland and Ireland (16).
The 1893 OWDA map (Fig. 2B) shows a similar north-south gradient
of rainfall deficit over the British Isles and also shows the drought ex-
tending over continental Europe, as alluded to in this report.

The Irish famine of 1740–1741: This event has been attributed to
unusually lowwinter and spring temperatures in 1740, resulting in crop
failures and subsequent famine (17). The OWDA is not well suited for
determining temperature anomalies because it primarily reflects warm
season hydroclimate. However, climate field reconstructions of seasonal
precipitation from documentary and early instrumental data (18) indi-
cate that spring-summer rainfall over Ireland in 1741 was well below
normal relative to themodern average.Drought over Irelandmay there-
fore have contributed to the severity of the famine through its negative
impact on food production in 1741. The OWDA map of 1741 (Fig. 2C)
indicates severe drought over Ireland that also extended over England
andWales, consistent with previously reported record rainfall deficits (19).

The great droughts of 1616 and 1540: Droughts over Czech lands
have been reconstructed fromdocumentary records since 1090CE,with
five “outstanding drought events” (1540, 1590, 1616, 1718, and 1719)
described (20). We highlight the 1616 and 1540 droughts here but note
that all five outstanding drought events over Czech lands are well
expressed in the OWDA (SupplementaryMaterials). The 1616 drought
began in the spring and continued throughout the summer with “great
heat, dried-up rivers” and amark on a “hunger stone” on the Elbe River
(20). Similar conditions also extended into Switzerland and Germany.
The OWDAmap of 1616 (Fig. 2D) indicates severe to extreme drought
over central and eastern Europe, much the same as indicated on Czech
documentary records. The 1540 drought has been described as a “worst-
case” event in terms of both precipitation deficit and excessive warmth
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Fig. 1. Map of the JJA scPDSI target field (small black grid points) and
the 106 chronology tree-ring network used for reconstruction. There

are 5414 half-degree scPDSI grid points. The OWDA tree-ring network (filled
triangles shaded by start year) illustrates the reasonably uniform coverage of
chronologies across the domain, except for Russia.
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over central Europe relative to droughts that have occurred over the last
century (21). TheOWDAmap for 1540 (Fig. 2E) shows the widespread
occurrence ofmoderate to extremedroughts in central Europe, consistent
with reports (18, 19), but not aworst-case event even among the examples
shown here.

The great European famine of 1315–1317: This is one of the most
famous historical catastrophes in late medieval European history, a
famine caused by a multiyear period of excessive wetness that made
food production nearly impossible (22). This pluvial actually began
in 1314, but the following year was considered the most catastrophic
year, when “… there was universal failure of crops in 1315 inmost if not
all lands of Europe from the Pyrenees to Slavic regions, from Scotland
to Italy” (22). The 1315 OWDAmap (Fig. 2F) corresponds well to this
pattern of excessive wetness and crop failure and also shows the drier
conditions in southern Italy, “… which escaped the great crisis that
raged north of the Alps” (22). The OWDA now provides strong evi-
dence for the hydroclimatic conditions over Europe that were respon-
sible for this catastrophe and shows its yearly progression from 1314
to 1317 in full detail (Supplementary Materials).

The spatial and temporal details of the OWDA reconstructions are a
marked improvement in our knowledge of changing moisture condi-
tions across the Old World during the Common Era (Supplementary
Materials). These few illustrations alone show that the OWDA now
provides a new basis for the study of pre- and postindustrial hydro-
climatic variabilities and their possible causes and consequences on
Cook et al. Sci. Adv. 2015;1:e1500561 6 November 2015
the Old World. The “Medieval Climate Anomaly” (MCA) (23) and
“Little Ice Age” (LIA) (24) periods are particularly interesting, as well as
controversial, because of uncertainty over their conditions relative to the
modern period and the degree of spatial heterogeneity in preindustrial
climate (25). While debate about the exact characteristics of tempera-
ture variability during theMCA and LIA continues, hydroclimatic con-
ditions remain even more poorly quantified. The NADA made clear
that the MCA period in North America experienced severe and pro-
longed “megadroughts” (26, 27), with additional paleoclimate evidence
for elevated aridity documented elsewhere in theNorthernHemisphere
(NH) (28). Across Europe, glaciers advanced during the LIA, testifying
to a generally cooler climate (24), but the hydroclimate signatures of the
MCA and LIA in theOldWorld have been poorly constrained. Here, we
use the OWDA for the first detailed comparison of the spatial patterns
of MCA and LIA hydroclimate across the Old World for the periods
1000–1200 and 1550–1750 CE, which fall within the generally accepted
time spans of the MCA and LIA (23, 24). The specific period chosen
here for the MCA is also one in which a megadrought was previously
reconstructed to have occurred in southern Finland (29). The modern
period is defined as 1850–2012. For each epoch, composite maps of re-
constructed scPDSI (Fig. 3A) are shown for the full OWDA domain
(upper maps) as well as for just the statistically significant (P < 0.01)
regions of wetness and dryness (lower maps). The MCA period ana-
lyzed here is significantly drier over a larger portion of continental
north-central Europe and southern Scandinavia than either the LIA
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or modern period, considerably adding to the previous report of an
MCA megadrought in southern Finland (29), and it now more com-
pletely defines the spatial pattern and extent of dryness during that time.
In contrast, the Romania and Ukraine regions of eastern Europe have
more similar patterns of dryness, and northern Fennoscandia and Russia
have more similar patterns of wetness, in all three epochs. Notably, the
overall timing of MCA dryness in north-central Europe is consistent
with that described for large areas of North America (26, 27) (see later
discussion).

A summary of the history of drought and wetness since 870 CE in
the core region of OldWorld MCA drought (Fig. 3A, yellow rectangle)
is presented inFig. 3B.Theoverallmean±1s error is−0.44±0.04 scPDSI
units from the expected mean of zero for the 1928–1978 calibration
period, which reflects the general tendency for drier conditions in the
preindustrial past. In contrast, the most recent period (1998–2012) has
been anomalously wet (+0.97 ± 0.24). It is necessary to go back to 1721–
1739 to find a wetter period of comparable duration (+1.55 ± 0.24). As a
relative index of drought, scPDSI has a high degree of spatial compara-
bility across a broad range of precipitation climatologies (30). This allows
us to compare this drought to another reconstructed medieval mega-
drought occurring at around the same time in western North America
Cook et al. Sci. Adv. 2015;1:e1500561 6 November 2015
(26). The 1000–1200 CEmegadrought over north-central Europe has a
reconstructed mean of −0.72 ± 0.10 scPDSI units. By comparison, the
worst megadrought in the California andNevada regions of the NADA
(26) lasted from 832 to 1074 CE (−0.84 ± 0.09, calculated after adjusting
the mean of the California/Nevada series to match that of the north-
central Europe series over their 870–2005 common interval). Thus, in
terms of relative dryness as modeled by the scPDSI, this MCA mega-
drought in the OWDA is comparable to one of the more exceptional
MCA megadroughts in the NADA.

Besides theMCA, Fig. 3B also reveals the occurrence of a mid–15th-
centurymegadrought in north-central Europe. Themost intense drought
phase lasted for 37 years from 1437 to 1473CE (−1.84 ± 0.20), with only
two isolated years of positive scPDSI. The timing of thismegadrought is
similar to that of the worst drought reconstructed to have occurred over
the past 1000 years in the southeastern United States (27). This suggests
the existence of some common hydroclimate forcing across the North
Atlantic, perhaps related to Atlantic Ocean sea surface temperature
variations and/or theNorth Atlantic Oscillation (31, 32). Finally, a third
megadrought occurred from1779 to 1827 (−1.34 ± 0.16). This period has
a subperiod of “major long-duration drought” (33) from 1798 to 1808
(−1.89 ± 0.38) in England andWales identified from early instrumental
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(B) The original annually resolved drought reconstructions in each region were averaged from 1000 to 1989 CE, transformed into standard normal de-
viates (Z scores), and low pass–filtered to emphasize variability that was >30 years in duration. The low pass–filtered average series were renormalized
to eliminate any differential weighting by region and averaged to produce the NHDA records (not renormalized) shown in black.
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and historical climate information. It is also the driest period within the
longer epoch (1779–1827) of persistently drier-than-average conditions
over north-central Europe. More generally, Fig. 3B reveals the existence
of large-amplitude decadal to centennial hydroclimate variability over
Europe and shows that, like North America, megadroughts in the Old
Worldwere not restricted to just theMCAperiod. In comparison, hydro-
climate variability over the 20th century, although large, does not ap-
pear unprecedented in amplitude or trend. Isolating signals of recent
GHG-induced hydroclimate change from this complex record of
natural variability will be challenging.
DISCUSSION

The OWDA greatly expands our understanding of the spatiotemporal
history of droughts and pluvials in the Old World. It confirms the oc-
currence of an MCAmegadrought in north-central Europe, first noted
in southern Finland (29), which is similar in timing, duration, and rel-
ative intensity to that found in the NADA for the western United States
(26). This finding significantly adds to the realization that NH droughts
were more prolonged during the MCA compared to the 20th century,
with little understanding as to why. In addition, the examplemaps illus-
trate its considerable relevance to studies of hydroclimate impact onOld
World societies and cultures over the Common Era.

The OWDA is an important new advancement toward achieving a
full and consistent spatial coverage of hydroclimatic variability across
the NH land areas during the Common Era, one of the primary goals
of Kaufman and the PAGES 2k Consortium (34). Figure 4 shows pro-
gress toward the completion of a “Northern Hemisphere Drought Atlas”
(NHDA) for the temperate latitude regions of the OWDA, NADA, and
MADA (Fig. 4A). This gives us an opportunity to compare hydroclimatic
variability between continents on a hemispheric basis back to the MCA
for the first time.

A first comparison, based on normalized averages of reconstructed
droughts smoothed to emphasize >30-year time scales of variability
(Fig. 4B), shows little commonality in the timing of wet and dry epochs
between drought atlas regions at the continental scale over the past
1000 years (average r = 0.05). However, there are several periods of dis-
tinct antiphasing between regions, especially between the NADA and
the MADA, which nonetheless suggests some dynamical links between
them. The NHDA average has also shown a long-term positive trend
from drier to wetter conditions over the temperate latitudes of the NH
since the MCA. The addition of the OWDA to the NADA andMADA
thus allows for more complete investigations of atmosphere-ocean
dynamical influences on the hemispheric patterns of hydroclimate
variability over the CommonEra. The use ofmultiple climate field recon-
structions (spatially and fully data-independent) represented by the
OWDA, NADA, and MADA should better constrain the modes of cli-
mate variability responsible and greatly improve our understanding of
the causes of hydroclimatic variability at interannual to centennial time
scales. Furthermore, completion of the OWDA, together with available
simulations of the lastmillennium, now allows us to determinewhether
state-of-the-art climatemodels in theNHcontain realistic hydroclimate
variability at interannual to centennial time scales [see Smerdon et al.
(35) for a North American example]. This knowledge is essential to
assessing whether models can correctly represent the range of future
hydroclimates, including wet and dry extremes, that combine forced
change with continued natural variability.
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MATERIALS AND METHODS

The scPDSI data used for reconstruction (11) are based on gridded
Climatic Research Unit Time Series (CRU TS) monthly temperature
and precipitation data (36) updated to version CRU TS 3.21 and cover-
ing the period 1901–2012. We examined the changing density of pre-
cipitation stations available for interpolation onto the CRU TS 3.21
precipitation grid before 1950 and found it to be stable back in time over
most of the OWDA domain (Supplementary Materials). The greatest
exception was found in Turkey and the Middle East, where little local
precipitation station data were available before 1930 for interpolation to
the half-degree grid. This is not desirable for evaluating reconstruction
skills in those regions over the 1901–1927 regression model validation
period.However, it is unlikely to adversely affect the tree-ring reconstruc-
tions themselves because the 1928–1978 calibration period used to
produce the reconstructions barely overlaps with the period of reduced
local precipitation data coverage. The correlation decay length (CDL) of
the scPDSI field was also evaluated and found to be ~800 km, on av-
erage, butwith considerable latitudinal variability. This informationwas
useful for objectively defining the search radius used to find tree-ring
chronologies for reconstruction of past droughts (see later discussion
and Supplementary Materials for details).

The tree-ring data used to produce the OWDA came from the In-
ternational Tree-Ring Data Bank and from contributions by European
dendrochronologists, including a large quantity from the dendroarch-
aeology community. Incorporating archaeological tree-ring data into the
tree-ringnetwork, after updatingwithmodern tree-ring data fromappro-
priate younger living trees (37), enabled the reconstructions to be
extended back a millennium or more over most of the OWDA domain.
The resulting tree-ring chronologies were developed for climate recon-
struction using the newest “signal-free”methods of tree-ring standardiza-
tion (38, 39), with emphasis on preserving long-term variability due to
climate. Because of considerable variation in the segment lengths of the
archaeological tree-ring series in each of those tree-ring data sets and the
associated difficulty in preserving long-term climate variability because of
“segment length curse” (40), a modified signal-free regional curve stan-
dardization (SF-RCS) (39) method was devised and used (see Supple-
mentaryMaterials for a detailed description of howRCSwas performed).

The climate field reconstructionmethod used to produce the OWDA
is the point-by-point regression (PPR) method (41), with an extension
of the procedure producing ensembles of climate reconstructions (12, 42).
The OWDA reconstruction presented here is the mean of eight ensem-
ble members, with each member being based on the weighting of each
tree-ring chronology used in PPR by some power of its correlation with
scPDSI (42). The initial search radius used by PPR to locate tree-ring
chronologies for reconstructing scPDSI at each grid point was set to
1000 km, a small enlargement over the estimated CDL (800 km) of
the instrumental scPDSI data to account for someof the irregular spacings
of the tree-ring chronology network shown in Fig. 1.

A value-added outcome of PPRwas the ability to evaluate the climate
sensitivity of the tree-ring chronologies used for scPDSI reconstruction.
This evaluation, performed through a simple correlation analysis, conclu-
sively demonstrated the overall moisture sensitivity of the tree-ring
chronologies over most of the OWDA domain, a result that is highly
consistent with an independent evaluation of the climate response of
tree-ring chronologies in Europe (43). At high elevations in central Eu-
rope and at high northern latitudes in Fennoscandia, the level of mois-
ture sensitivity does diminish and is increasingly replaced by sensitivity
6 of 9
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to growing-season temperatures. This change in climate sensitivity has
also been described by Babst et al. (43). The successful reconstruction of
droughts in Fennoscandia, using amixture ofmoisture- and temperature-
limited tree-ring records (44), indicates that this change in climate sensi-
tivity is not a serious issue (refer to SupplementaryMaterials for details).
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